Seminar Home En Home Jp

Lie Groups and Representation Theory Seminar 2017

List of speakers:
Lizhen Ji, Hideko Sekiguchi, Reiko Miyaoka #1, Reiko Miyaoka #2,
Date: March 10 (Fri), 2017, 17:00-18:30
Place: Room 056, Graduate School of Mathematical Sciences, the University of Tokyo
Speaker: Lizhen Ji (University of Michigan, USA)
Title: Satake compactifications and metric Schottky problems
Abstract:
[ pdf ]
The quotient of the Poincare upper half plane by the modular group SL(2, Z) is a basic locally symmetric space and also the moduli space of compact Riemann surfaces of genus 1, and it admits two important classes of generalization:
  1. Moduli spaces M_g of compact Riemann surfaces of genus g>1,
  2. Arithmetic locally symmetric spaces \Gamma \ G/K such as the Siegel modular variety A_g, which is also the moduli of principally polarized abelian varieties of dimension g.
There have been a lot of fruitful work to explore the similarity between these two classes of spaces, and there is also a direct interaction between them through the Jacobian (or period) map

J: M_g --> A_g.

In this talk, I will discuss some results along these lines related to the Stake compactifications and the Schottky problems on understanding the image J(M_g) in A_g from the metric perspective.

(joint with topology seminar)

Date: September 26 (Tue), 2017, 17:00-18:30
Place: Room 056, Graduate School of Mathematical Sciences, the University of Tokyo
Speaker: Hideko Sekiguchi (The University of Tokyo, Japan)
Title: Representations of Semisimple Lie Groups and Penrose Transform
Abstract:
[ pdf ]
The classical Penrose transform is generalized to an intertwining operator on Dolbeault cohomologies of complex homogeneous spaces $X$ of (real) semisimple Lie groups.
I plan to discuss a detailed analysis when $X$ is an indefinite Grassmann manifold.
To be more precise, we determine the image of the Penrose transform, from the Dolbeault cohomology group on the indefinite Grassmann manifold consisting of maximally positive $k$-planes in ${\mathbb{C}}^{p,q}$ ($1 \le k \le \min(p,q)$) to the space of holomorphic functions over the bounded symmetric domain.
Furthermore, we prove that there is a duality between Dolbeault cohomology groups in two indefinite Grassmann manifolds, namely, that of positive $k$-planes and that of negative $k$-planes.

(joint with topology seminar)

Date: October 24 (Tue), 2017, 17:30-18:30
Place: Room 056, Graduate School of Mathematical Sciences, the University of Tokyo
Speaker: Reiko Miyaoka (Tohoku University, Japan)
Title: Approach from the submanifold theory to the Floer homology of Lagrangian intersections
���O�����W�������̃t���A�z�����W�[�ɑ΂��镔�����l�̘_����̃A�v���[�`
Abstract:
[ pdf ]
The Gauss map images of isoparametric hypersurfaces in the spheres supply a rich family of minimal Lagrangian submanifolds of the complex hyperquadric Q_n(C). In simple cases, these are real forms of Q_n(C), and their Floer homology is known. In this talk, we consider the case when the number of distinct principal curvatures is 3,4,6, and report our results. This is a joint work with Hiroshi Iriyeh (Ibaraki U.), Hui Ma (Tsinghua U.) and Yoshihiro Ohnita (Osaka City U.).
���ʂ̓��a���Ȗʂ̃K�E�X�ʑ��ɂ�鑜�́C���f�Q�����Ȗ�Q_n(C)�̋ɏ����O�� ���W���������l�̖̂L�x�ȗ��^����D�ȒP�ȏꍇ�C�����Q_n(C)�̎��`�Ƃ� ��C���̃t���A�z�����W�[�͊��m�ł���D�����ł͑��قȂ��ȗ��̌��� 3,4,6�̏ꍇ�ɓ���ꂽ���ʂ�񍐂��邱�Ƃ��q�ׂ�D�������́C���]���i��� ��j�CHui Ma�i���ؑ�w�j�C��m�c�`�T�i���s��j�Ƃ̋��������ł���D

(joint with topology seminar)

�W���u�`�����j������s���܂��B �Z�~�i�[�̊J�n�����͂��‚��ƈقȂ�܂��B

�W���u�`
Date: October 23 (Mon)-27 (Fri), 2017
Place: ������w��w�@�����Ȋw������ �����Ȋw���ʍu�`II�C�����Ȋw���_B
Speaker: �{����q (���k��w��w�@���w������)
Title: ���a���Ȗʘ_����Ƃ��̉��p
Abstract:
[ pdf ]
�L�x�ȗ�����“��a���Ȗʂ��w�Ԃ��Ƃɂ��C�������l�̘_�� ��{��g�ɂ‚���D���̃K�E�X�ʑ��̑�����Ȃ郉�O�����W���������l�̂� �������_���l���C�t���A�z�����W�[��_����D
���a���Ȗʑ��Ƃ́C20 ���I�����̃C�^���A�ɂ�����􉽌��w�ɒ[�𔭂� ��C�i�s�g�ʂ̂‚��钴�Ȗʑ��̂��Ƃł���D�Â������͓I�ɂ��M�`���� ���ꂩ��_�����Ă���D���[�N���b�h��ԂƑo�ȋ�Ԃł͊ȒP�Ȃ��̂��� ����Ȃ����C���ʂł͑����̔񎩖��ȗႪ���݂��C����Clifford �‚̕\���� ��\���������̂͏d�v�ł���D
��ʃ��[�}�����l�̂̒��ł��l�����邪�C�{�u�`�ł͋��ʂ̓��a���Ȗ� ���ɓI�����ڂ�C���̊�{�����C���m�̕��ނ��q�ׂ�D
���p�Ƃ��āC���a���Ȗʂ̃K�E�X�ʑ��̑��Ƃ��ē����镡�f�Q�����Ȗ� Qn(C) �̃��O�����W���������l�̂ɂ‚��āC���O�����W�������̃t���A�z�� ���W�[�Ɋւ���ŋ߂̌��ʂ��Љ��i���̕����͉Ηj�̃g�|���W�[�E���[ �Q�_�E�\���_�����Z�~�i�[�ł��b���܂��j�D

�u�`�T�v�F
�P. �@����
�@�@(1) ���a���Ȗʘ_�̗��j�Ɣw�i
�@�@(2) ���a�֐��Ɠ��a���Ȗʂ̊ȒP�ȗ�
�@�@(3) Cartan �̌����Ɖ��p
�Q�D���s���Ȗʑ�
�@�@(1) ���s���Ȗʑ��̌^��p�f
�@�@(2) �ŕ������l�̂̌^��p�f��Cartan�̌���
�@�@(3) ���ʂ̓��a���Ȗʂ̃K�E�X�ʑ�
�R�D���ʂ̓��a���Ȗ�
�@�@(1) Munzner �̒藝
�@�@(2) ���a���Ȗʂ̈ʑ��\��
�S�D�����C�񓙎��ȓ��a���Ȗ�
�@�@(1) Hisang-Lawson �̒藝�C�������Ȗʂ̃t�@�C�o�[���\��
�@�@(2) Clifford �‚̕\����OT-FKM �^���a���Ȗʂ̍\��
�T�D���ނƉ��p
�@�@(1) ���m�̗�ƕ���
�@�@(2) ���a���Ȗʂ̃K�E�X���ƃ��O�����W���������l�̂̌������_
���ѕ]�����@�F �u�`���ɏo�����𐔑�����C���|�[�g�Ƃ��Ē�o���邱�ƁD

Top

© Toshiyuki Kobayashi

OSZAR »