東京確率論セミナー
過去の記録 ~05/29|次回の予定|今後の予定 05/30~
開催情報 | 月曜日 16:00~17:30 数理科学研究科棟(駒場) 126号室 |
---|---|
担当者 | 佐々田槙子、中島秀太(明治大学)、星野壮登(東京科学大学) |
セミナーURL | https://sites.google.com/view/tokyo-probability-seminar23/ |
次回の予定
2025年06月02日(月)
16:00-17:30 数理科学研究科棟(駒場) 126号室
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
Wai-Kit Lam 氏 (National Taiwan University)
Disorder monomer-dimer model and maximum weight matching
15:15〜 2階のコモンルームでTea timeを行います。ぜひこちらにもご参加ください。
Wai-Kit Lam 氏 (National Taiwan University)
Disorder monomer-dimer model and maximum weight matching
[ 講演概要 ]
Given a finite graph, one puts i.i.d. weights on the edges and i.i.d. weights on the vertices. For a (partial) matching on this graph, define the weight of the matching by adding all the weights of the edges in the matching together with the weights of the unmatched vertices. One would like to understand how the maximum weight behaves as the size of the graph becomes large. The talk will be divided into two parts. In the first part, we consider the "positive temperature" case (a.k.a. the disorder monomer-dimer model). We show that the model exhibits correlation decay, and from this one can prove a Gaussian central limit theorem for the associated free energy. In the second part, we will focus on the "zero temperature" case, the maximum weight matching. We show that if the edge weights are exponentially distributed, and if the vertex weights are absent, then there is also correlation decay for a certain class of graphs. This correlation decay allows us to define the maximum weight matching on some infinite graphs and also prove limit theorems for the maximum weight matching. Joint work with Arnab Sen (Minnesota).
Given a finite graph, one puts i.i.d. weights on the edges and i.i.d. weights on the vertices. For a (partial) matching on this graph, define the weight of the matching by adding all the weights of the edges in the matching together with the weights of the unmatched vertices. One would like to understand how the maximum weight behaves as the size of the graph becomes large. The talk will be divided into two parts. In the first part, we consider the "positive temperature" case (a.k.a. the disorder monomer-dimer model). We show that the model exhibits correlation decay, and from this one can prove a Gaussian central limit theorem for the associated free energy. In the second part, we will focus on the "zero temperature" case, the maximum weight matching. We show that if the edge weights are exponentially distributed, and if the vertex weights are absent, then there is also correlation decay for a certain class of graphs. This correlation decay allows us to define the maximum weight matching on some infinite graphs and also prove limit theorems for the maximum weight matching. Joint work with Arnab Sen (Minnesota).