代数学コロキウム
過去の記録 ~05/28|次回の予定|今後の予定 05/29~
開催情報 | 水曜日 17:00~18:00 数理科学研究科棟(駒場) 117号室 |
---|---|
担当者 | 今井 直毅,ケリー シェーン |
次回の予定
2025年06月18日(水)
17:00-18:00 数理科学研究科棟(駒場) 117号室
劉 元旻 氏 (東京大学大学院数理科学研究科)
p-Adic cohomology over Laurent series rings and weight spectral sequences of strictly semistable schemes (日本語 (Japanese))
劉 元旻 氏 (東京大学大学院数理科学研究科)
p-Adic cohomology over Laurent series rings and weight spectral sequences of strictly semistable schemes (日本語 (Japanese))
[ 講演概要 ]
Let $k$ be a field of characteristic $p > 0$. Berthelot defined the rigid cohomology for varieties over $k$ after the work of Monsky-Washnitzer and Dwork. He also consider the theory of arithmetic D-modules which should be the coefficients for rigid cohomology. His work is generalized by Lazda-Pál and Caro to theories over $k((t))$. I will talk about their generalization and the construction of weight spectral sequence of strictly semistable schemes using arithmetic D-modules.
Let $k$ be a field of characteristic $p > 0$. Berthelot defined the rigid cohomology for varieties over $k$ after the work of Monsky-Washnitzer and Dwork. He also consider the theory of arithmetic D-modules which should be the coefficients for rigid cohomology. His work is generalized by Lazda-Pál and Caro to theories over $k((t))$. I will talk about their generalization and the construction of weight spectral sequence of strictly semistable schemes using arithmetic D-modules.